C3	0.2843 (6)	-0.3075(5)	0.1963 (4)	0.0589 (12)
C4	0.1314 (7)	-0.3855 (4)	0.1778 (4)	0.0653 (13)
C5	0.0189 (6)	-0.3328(4)	0.1741 (4)	0.0609 (12)
C6	0.0619 (5)	-0.2000(4)	0.1928 (4)	0.0478 (10)
Č7	0.2502 (4)	0.1557 (4)	0.3547 (3)	0.0378 (9)
C8	0.2274 (5)	0.1217 (4)	0.4554 (4)	0.0488 (10)
C9	0.2326 (5)	0.2123 (5)	0.5605 (4)	0.0590 (12)
C10	0.2644 (5)	0.3409 (5)	0.5680 (5)	0.0647 (13)
C11	0.2894 (5)	0.3802 (4)	0.4720 (5)	0.0547 (11)
C12	0.2783 (4)	0.2872 (4)	0.3661 (4)	0.0451 (10)
C13	0.4469 (4)	0.1384 (4)	0.2335 (4)	0.0368 (9)
C14	0.5888 (5)	0.1722 (4)	0.3569 (4)	0.0428 (9)
C15	0.7501 (5)	0.2492 (4)	0.3896 (4)	0.0482 (10)
C16	0.7747 (5)	0.2993 (4)	0.2986 (5)	0.0505 (11)
C17	0.6391 (5)	0.2696 (4)	0.1760 (4)	0.0484 (10)
C18	0.4768 (5)	0.1912 (4)	0.1440 (4)	0.0437 (10)

	<u> </u>			11	0	۰.
Toble 7	Solortod	apomptric	narameters	IA.	× .	
1 a D C Z	DEICLICH	geomenne	purumenters	14 .,		ε.

	-		
Pd—Cl	2.2907 (10)	Р—С7	1.827 (4)
PdP	2.3051 (12)	P-C13	1.819 (4)
P—C1	1.821 (4)		
Cl—Pd—P	95.23 (4)	C2-C1-P	127.8 (3)
C1—P—C13	107.4 (2)	C6-C1-P	115.9 (3)
C1-P-C7	109.4 (2)	C8C7P	128.4 (3)
C13—P—C7	99.2 (2)	C12C7P	115.7 (3)
C1—P—Pd	106.01 (12)	C18-C13-P	122.9 (3)
C13—P—Pd	119.98 (12)	C14C13P	120.6 (3)
C7—P—Pd	114.43 (11)		
C1-PdPC1	123.42 (13)	Pd—P—C1—C2	116.0 (3)
Cl—Pd—P—C13	-114.93 (14)	PdPC7C8	109.1 (3)
CI-Pd-P-C7	2.75 (14)	Pd—P—C13—C14	177.4 (2)

Scattering factors, dispersion corrections and absorption coefficients were taken from *International Tables for Crystallography*, (1992, Vol. C, Tables 6.1.1.4, 4.2.6.8 and 4.2.4.2).

Data collection: *DIF*4 (Stoe & Cie, 1988a). Cell refinement: *DIF*4. Data reduction: *EMPIR*, *REDU*4 (Stoe & Cie, 1988b,c). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *SHELXTL-Plus* (Sheldrick, 1991). Software used to prepare material for publication: *SHELXL*93.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: JZ1069). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Dyer, P. N. & Moseley, F. (1981). Eur. Patent 38700 (Chem. Abstr. 96, 106643j).
- Ferguson, G., McCrindle, R., McAlees, A. J. & Masood, P. (1982). Acta Cryst. B38, 2679-2681.
- Kemmitt, R. D. W., Nichols, D. I. & Peacock, R. D. (1968). J. Chem. Soc. A, pp. 2149–2152.
- Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017.
- Schaefer, W. P., Lyon, D. K., Labinger, J. A. & Bercaw, J. E. (1992). Acta Cryst. C48, 1582-1584.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Stoe & Cie (1988b). EMPIR. Empirical Absorption Correction Program. Version 1.03. Stoe & Cie, Darmstadt, Germany.
Stoe & Cie (1988c). REDU4. Data Reduction Program. Version 6.2.

Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 330-333

Tetraphenylphosphonium Pentachlorostannat, PPh₄[SnCl₅], und Tetraphenylphosphonium Pentachlorostannat Monohydrat, PPh₄[SnCl₅.H₂O]

Ulrich Müller, Jürgen Siekmann und Gerlinde Frenzen

Fachbereich Biologie/Chemie, Universität Gh Kassel, 34109 Kassel, Deutschland

(Eingegangen am 4. Mai 1995; angenommen am 10. August 1995)

Abstract

Tetraphenylphosphonium pentachlorostannate contains trigonal-bipyramidal $[SnCl_5]^-$ ions. It is isotypic with PPh₄[Sn(CH₃)Cl₄]; however, the published space group of the latter is corrected from P2 to P2/n. In the hydrate the $[SnCl_5(H_2O)]^-$ ions have a distorted octahedral configuration. The packing principle is the same for both compounds and corresponds to the known arrangement in tetraphenylphosphonium compounds with PPh₄⁺ ions stacked in columns in the *c* direction.

Kommentar

Bei Hauptgruppenelementen ist die trigonale Bipyramide das normale Koordinationspolyeder für die Koordinationszahl fünf. Dies gilt auch für das SnCl₅⁻-Ion in den wenigen bekannten Strukturen von Pentachlorostannaten (Freedman & Young, 1964; Ginzburg *et al.*, 1977; Shamir, Lusti, Bino, Cohen & Gibson, 1985). Auch das $InCl_5^{2-}$ -Ion im (PPh₄)₂[InCl₅].CH₃CN hat trigonal-bipyramidale Struktur (Bubenheim, Frenzen & Müller, 1995), während das quadratisch-pyramidale $InCl_5^{2-}$ -Ion im (NEt₄)₂[InCl₅] eine der wenigen Ausnahmen ist (Brown, Einstein & Tuck, 1969). Für Tetraphenylphosphonium-Ionen

PPh₄[SnCl₅.H₂O]

scheinen quadratisch-pyramidale Anionen eine besonders günstige Packung in der Raumgruppe P4/n zu ermöglichen, wenn das Kationen-zu-Anionen-Verhältnis 1 zu 1 ist (Müller, 1980); zahlreiche Beispiele mit Anionen MEX_4^- sind bekannt (M =Übergangsmetall; E = O, S, N; X = Halogen). Die PPh₄⁺-Ionen sind dabei zu Säulen in Richtung c gestapelt und nehmen Punktlagen der Symmetrie 4 an, während sich die Anionen auf vierzähligen Drehachsen zwischen den Säulen befinden. Wir sind der Frage nachgegangen, ob diese Packung im PPh₄[SnCl₅] quadratisch-pyramidale SnCl5-Ionen erzwingen kann. Wie die Kristallstrukturbestimmung jetzt gezeigt hat, ist das nicht der Fall. Trigonal-bipyramidale SnCl5-Ionen passen sich offenbar genauso gut in die Lücken zwischen den Säulen von PPh₄⁺-Ionen ein (Fig. 1). Es kommt lediglich zu einer leichten Verzerrung der Packung, wobei aus der tetragonalen Zelle der Raumgruppe P4/n eine monokline Zelle in der maximalen Untergruppe P2/n wird. Die Punktlagensymmetrie der Kationen und Anionen verringert sich von $\overline{4}$ bzw. von 4 auf 2.

Fig. 1. Die Elementarzelle von PPh₄[SnCl₅] in Projektion längs der monoklinen c-Achse. Die PPh[‡]-Ionen sind in Blickrichtung auf zweizähligen Drehachsen zu Säulen in Richtung c gestapelt, die Anionen befinden sich ebenfalls auf zweizähligen Drehachsen (Stereobild).

PPh₄[SnCl₅] kristallisiert isotyp zu PPh₄[SnCH₃Cl₄] (Webster, Mudd & Taylor, 1976). Dessen Struktur wurde allerdings in der Raumgruppe *P*2 beschrieben. Eine Überprüfung der Atomkoordinaten zeigt jedoch, daß auch hier *P*2/*n* die zutreffende Raumgruppe ist; den publizierten Koordinaten müssen die Werte (0,25, -0,1007, 0,25) addiert werden, um auf Koordinaten zu kommen, welche die konventionelle Aufstellung der Raumgruppe *P*2/*n* erfüllen (*b* als monokline Achse). Wir haben die Aufstellung mit *c* als monokliner Achse gewählt, um den besseren Vergleich mit der tetragonalen Struktur von PPh₄[SnCl₅.H₂O] zu ermöglichen. Die Struktur des $SnCl_5^-$ -Ions (Fig. 2) entspricht weitgehend derjenigen in den oben zitierten drei Pentachlorostannaten; dies gilt auch für die Abweichungen der Bindungswinkel in der Äquatorialebene vom Idealwert von 120° (2 × 118,4°, 1 × 123,1°; Tabelle 2).

Fig. 2. Das SnCl5-Ion mit Ellipsoiden der thermischen Schwingung (40% Aufenthaltswahrscheinlichkeit).

Das Anion im Hydrat PPh₄[SnCl₅.H₂O] hat verzerrt oktaedrische Struktur (Fig. 3), die nicht nennenswert von derjenigen in anderen Verbindungen mit dem gleichen Anion abweicht (Einstein & Field, 1975; Ginzburg, Alaksandrov, Struchkov, Setkina & Kursanov, 1980). Die Packung im Kristall entspricht der obengenannten Packung in der Raumgruppe P4/n(Fig. 4). Da sich das [SnCl₅.H₂O]⁻-Ion auf einer vierzähligen Drehachse befindet, muß das Wassermolekül in zwei Orientierungen fehlgeordnet sein. Das relativ große und sehr anisotrope Schwingungsellipsoid des O-Atoms (Fig. 3) ist eine wohlbekannte Erscheinung bei diesem Strukturtyp und beruht darauf, daß das [SnCl₅.H₂O]⁻-Ion etwas gegen die vierzählige Achse verkippt ist (Müller & El-Kholi, 1989). Wir haben die

Fig. 3. Das [SnCl₅.H₂O]⁻-Ion mit Ellipsoiden der thermischen Schwingung (40% Aufenthaltswahrscheinlichkeit).

Fig. 4. Die Elementarzelle von PPh₄[SnCl₅.H₂O] in Projektion längs der tetragonalen c-Achse. Vergleiche die gleichartige Packung wie in Fig. 1. Die PPh[‡]-Ionen nehmen ⁴-Lagen ein, die Anionen befinden sich auf vierzähligen Drehachsen (Stereobild).

Lagen der H-Atome nicht ermittelt. PPh₄[SnCl₅.H₂O] kristallisiert isotyp zu Hydraten der Zusammensetztung $EPh_4[MOX_4.H_2O]$ (E = P, As; M = Metall; X = Halogen; Müller, 1980, 1984). Die enge Verwandtschaft der Strukturen in den Raumgruppen P4/n und P2/n ist durch Vergleich von Fig. 1 und 4 offensichtlich.

Experimentelles

Zur Herstellung von PPh4[SnCl5] wurde eine Lösung von 0,82 g (3,15 mmol) frisch destilliertem SnCl₄ in 20 ml Thionylchlorid zu einer Lösung von 1,18 g (3,15 mmol) wasserfreiem PPh₄Cl in 18 ml Thionylchlorid getropft. Die Lösung wurde auf 8 ml eingeengt, dann wurde trokknes CCl₄ langsam bis zur beginnenden Trübung zugesetzt. Beim Stehen bei 253 K kristallisierten 1,1 g des Produkts, das unter Feuchtigkeitsausschluß abfiltriert wurde (Ausbeute 67%). PPh4[SnCl₅.H₂O] enstand auf die gleiche Art wie PPh₄[SnCl₅], jedoch bei Verwendung von Dichlormethan als Lösungsmittel und indem nach dem Vermischen der Reaktionslösungen das Gefäß an (feuchter) Luft stehen gelassen wurde.

Verbindung PPh₄[SnCl₅]

Kristalldaten

 $(C_{24}H_{20}P)[SnCl_5]$ $M_r = 635,37$ Monoklin P2/n (c als Symmetrieachse) a = 13,113 (3) Å b = 13,315 (3) Å c = 7,405 (2) Å $\gamma = 91,39(3)^{\circ}$ V = 1292,5 (5) Å³ Z = 2 $D_x = 1,632 \text{ Mg m}^{-3}$

Datensammlung

Vierkreisdiffraktometer Enraf-Nonius CAD-4 ω -Abtastung Absorptionskorrektur: empirisch nach ψ -scans $T_{\min} = 0,74, T_{\max} = 0,81$ 4551 gemessene Reflexe 2434 unabhängige Reflexe 1804 beobachtete Reflexe $[l > 2\sigma(l)]$

Verfeinerung

Verfeinerung auf F^2 $R[F^2 > 2\sigma(F^2)] = 0,0496$ $wR(F^2) = 0.1437$ S = 0.1232434 Reflexe 142 Parameter $U(\mathbf{H}) = 1,3 \times U(\mathbf{C})$ $w = 1/[\sigma^2(F_o^2) + (0.438P)^2]$ + 1052,2*P*] mit $P = (F_o^2 + 2F_c^2)/3$

Mo $K\alpha$ Strahlung $\lambda = 0.71073 \text{ Å}$ Gitterparameter aus 25 Reflexen $\theta = 17 - 21^{\circ}$ $\mu = 1.578 \text{ mm}^{-1}$ T = 299 (2) KOuader $0.35 \times 0.20 \times 0.15$ mm Farblos

 $R_{\rm int} = 0,0455$ $\theta_{\rm max} = 25,9^{\circ}$ $h = -16 \rightarrow 16$ $k = -16 \rightarrow 16$ $l = 0 \rightarrow 9$ 2 Kontrollreflexe Häufigkeit: 60 min Intensitätsschwankung: <4,7%

> $(\Delta/\sigma)_{\rm max} = 0.014$ $\Delta \rho_{\rm max} = 0,485 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0,483 \ {\rm e} \ {\rm \AA}^{-3}$ Extinktionskorrektur: keine Atomformfaktoren aus International Tables for Crystallography (1992, Bd. C, Tabellen 4.2.6.8 und 6.1.1.4)

Tabelle 1. Atomkoordinaten und Parameter für den äquivalenten isotropen Temperaturfaktor $(Å^2)$ von $PPh_4[SnCl_5]$

$U_{\rm ag} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	х	у	Ζ	$U_{\rm ad}$
Sn	1/4	1/4	0,08392 (12)	0,0439 (3)
Cll	0,1820 (3)	0,0819 (2)	0,0953 (5)	0,0804 (9)
Cl2	0,1041 (3)	0,3033 (3)	0,2343 (6)	0,0946 (12)
C13	1/4	1/4	-0,2258 (5)	0,0790 (12)
Р	3/4	1/4	0,0577 (4)	0,0403 (7)
Cl	0,6490 (6)	0,2071 (6)	-0,0887 (12)	0,042 (2)
C2	0,6123 (7)	0,1088 (7)	-0,0849 (14)	0,050 (2)
C3	0,5366 (8)	0,0788 (7)	-0,2034 (15)	0,058 (2)
C4	0,4983 (8)	0,1472 (8)	-0,3226 (15)	0,061 (3)
C5	0,5350 (8)	0,2424 (8)	-0,3298 (15)	0,063 (3)
C6	0,6110 (8)	0,2743 (7)	-0,2138 (14)	0,056 (2)
C7	0,7092 (7)	0,3498 (6)	0,2015 (12)	0,042 (2)
C8	0,7792 (8)	0,3860 (8)	0,3306 (13)	0,054 (2)
C9	0,7501 (9)	0,4631 (8)	0,4459 (13)	0,060 (3)
C10	0,6561 (9)	0,5032 (8)	0,4310 (16)	0,066 (3)
C11	0,5863 (9)	0,4663 (8)	0,3061 (16)	0,064 (3)
C12	0,6128 (7)	0,3886 (7)	0,1906 (13)	0,049 (2)

Tabelle 2. Bindungsabstände (Å) und -winkel (°) im PPh₄[SnCl₅]

	-	-	
Sn—Cl1	2,391 (3)	PC1	1,795 (9)
Sn—C12	2,339 (3)	Р—С7	1,794 (8)
Sn—C13	2,293 (4)		
Cll ⁱ —Sn—Cll	175,9 (2)	Cl2—Sn—Cl2 ⁱ	123,1 (2)
C11—Sn—Cl2	88,73 (13)	C1—P—C1 ¹¹	105,6 (6)
C11SnC12 ⁱ	89,34 (13)	C1—P—C7	111,3 (4)
C11SnC13	92,03 (9)	C1 ⁿ —P—C7	110,8 (4)
C12SnC13	118,43 (12)	C7—P—C7 ¹¹	107,2 (6)

Symmetriebezeichnungen: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, z; (ii) $\frac{3}{2} - x$, $\frac{1}{2} - y$, z.

Verbindung PPh₄[SnCl₅.H₂O]

Kristalldaten $(C_{24}H_{20}P)[SnCl_5.H_2O]$ $M_r = 653,39$ Tetragonal P4/na = 13,173 (1) Å c = 7,590 (1) Å V = 1317,3 (2) Å³ Z = 2 $D_{\rm r} = 1.647 {\rm Mg m^{-3}}$

Datensammlung

Vierkreisdiffraktometer
Enraf-Nonius CAD-4
ω -Abtastung
Absorptionskorrektur:
gausssche Integration nach
ausgemessenem Kristall
$T_{\min} = 0.76, T_{\max} = 0.92$
1461 gemessene Reflexe
1343 unabhängige Reflexe
901 beobachtete Reflexe
$[I > 2\sigma(I)]$

N 12 0. 11

$R_{\rm int} = 0,0328$
$\theta_{\rm max} = 26.3^{\circ}$
$h = 0 \rightarrow 16$
$k = 0 \rightarrow 16$
$l = 0 \rightarrow 9$
2 Kontrollreflexe
Häufigkeit: 60 min
Intensitätsschwankung:
< 3,4%

Verfeinerung

Verfeinerung auf F^2	$(\Delta/\sigma)_{\rm max} = -0.023$
$R[F^2 > 2\sigma(F^2)] = 0,0405$	$\Delta \rho_{\rm max} = 0.717 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0,1201$	$\Delta \rho_{\rm min} = -0,769 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0,980	Extinktionskorrektur: keine
1343 Reflexe	Atomformfaktoren aus
76 Parameter	International Tables for
Ein gemeinsamer Wert für	Crystallography (1992,
<i>U</i> (H)	Bd. C, Tabellen 4.2.6.8
$w = 1/[\sigma^2(F_o^2) + (0,1000P)^2]$	und 6.1.1.4)
mit $P = (F_o^2 + 2F_c^2)/3$	

Tabelle 3. Atomkoordinaten und Parameter für den äquivalenten isotropen Temperaturfaktor (A^2) von $PPh_4[SnCl_5.H_2O]$

$$U_{\mathrm{aq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	Z	Uän
1/4	1/4	0,17383 (9)	0,0403 (3)
1/4	1/4	0,4841 (4)	0,0692 (10)
0,1905 (2)	0,07952 (15)	0,1495 (3)	0,0900 (8)
1/4	1/4	-0,1216 (18)	0,181 (9)
3/4	1/4	0	0,0369 (6)
0,7072 (4)	0,3506 (4)	0,1422 (7)	0,0391 (12)
0,6104 (4)	0,3891 (4)	0,1334 (8)	0,0447 (13)
0,5811 (5)	0,4636 (5)	0,2519 (10)	0,059 (2)
0,6475 (6)	0,4984 (5)	0,3755 (9)	0,062 (2)
0,7442 (6)	0,4600 (6)	0,3863 (9)	0,063 (2)
0,7747 (5)	0,3847 (5)	0,2717 (8)	0,0506 (15)
	x 1/4 1/4 0,1905 (2) 1/4 3/4 0,7072 (4) 0,6104 (4) 0,6811 (5) 0,6475 (6) 0,7442 (6) 0,7747 (5)	x y 1/4 1/4 1/4 1/4 1/4 1/4 0,1905 (2) 0,07952 (15) 1/4 1/4 3/4 1/4 0,7072 (4) 0,3506 (4) 0,6104 (4) 0,3891 (4) 0,5811 (5) 0,4636 (5) 0,6475 (6) 0,4984 (5) 0,7442 (6) 0,4600 (6) 0,7747 (5) 0,3847 (5)	x y z $1/4$ $1/4$ $0,17383$ (9) $1/4$ $1/4$ $0,4841$ (4) $0,1905$ (2) $0,07952$ (15) $0,1495$ (3) $1/4$ $1/4$ $-0,1216$ (18) $3/4$ $1/4$ 0 $0,7072$ (4) $0,3506$ (4) $0,1422$ (7) $0,6104$ (4) $0,3891$ (4) $0,1334$ (8) $0,5811$ (5) $0,4636$ (5) $0,2519$ (10) $0,6475$ (6) $0,4984$ (5) $0,3755$ (9) $0,7442$ (6) $0,4600$ (6) $0,3863$ (9) $0,7747$ (5) $0,3847$ (5) $0,2717$ (8)

Tabelle 4. Bindungsabstände (Å) und -winkel (°) im $PPh_4[SnCl_5.H_2O]$

		-	
Sn—Cl1	2,355 (3)	Sn—O	2,24 (1)
Sn—Cl2	2,386 (2)	P—C1	1,800 (5)
Cl1—Sn—Cl2	94,44 (6)	O-Sn-Cl2	85,56 (6)
Cl2 ⁱ —Sn—Cl2	171,12 (13)	Cl-P-Cl ⁱⁱⁱ	106,3 (3)
Cl2 ⁱⁱ —Sn—Cl2	89,656 (10)	Cl-P-Cl ^{iv}	111,1 (2)
O—Sn—Cl1	180,0		

Symmetriebezeichnungen: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} - y, x, z$; (iii) $\frac{3}{2} - x, \frac{1}{2} - y, z$; (iv) $\frac{1}{2} + y, 1 + x, -z$.

Für beide Verbindungen gilt, Datensammlung und Zellverfeinerung: *CAD*-4 *Software* (Enraf-Nonius, 1989). Datenreduktion: *XCAD*4 (Harms, 1987). Programm zur Strukturlösung von PPh₄[SnCl₅]: *SHELXS*86 (Sheldrick, 1985). Strukturlösung von PPh₄[SnCl₅.H₂O]: Isotypie zu AsPh₄[ReOCl₄.-H₂O] (Müller, 1984). Strukturverfeinerung beider Verbindungen: *SHELXL*93 (Sheldrick, 1993). Graphik: *ORTEX* (McArdle, 1994), *ATOMS* (Dowty, 1993). Programm zur Aufbereitung des Datenmaterials: *SHELXL*93.

Dem Fonds der Chemischen Industrie danken wir für gewährte Unterstützung.

Die Listen der Strukturfaktoren, anisotropen Verschiebungsparameter, H-Atom Koordinaten, und vollständigen geometrischen Daten sind bei der IUCr (Aktenzeichen: JZ1063) hinterlegt. Kopien sind erhältlich durch: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Literatur

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Bubenheim, W., Frenzen, G. & Müller, U. (1995). Acta Cryst. C51, 1120-1124.
- Dowty, E. (1993). ATOMS. Program for Displaying Atomic Structures. Kingsport, Tennessee, VStA.
- Einstein, F. W. B. & Field, J. S. (1975). J. Chem. Soc. Dalton Trans. pp. 1628-1633.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, die Niederlande.
- Freedman, H. H. & Young, A. E. (1964). J. Am. Chem. Soc. 86, 733-735.
- Ginzburg, A. G., Bokyi, N. G., Yanovsky, A. I., Struchkov, Yu. T., Setkina, V. N. & Kursanov, D. N. (1977). J. Organomet. Chem. 136, 45–55.
- Ginzburg, A. G., Alaksandrov, G. G., Struchkov, Yu. T., Setkina, V. N. & Kursanov, D. N. (1980). J. Organomet. Chem. 199, 229– 242.
- Harms, K. (1987). XCAD4. Programm zur Datenreduktion von CAD-4-Meßdaten. Universität Marburg. Deutschland.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Müller, U. (1980). Acta Cryst. B36, 1075-1081. Dort weitere Literatur.
- Müller, U. (1984). Acta Cryst. C40, 571-572.
- Müller, U. & El-Kholi, A. (1989). Acta Cryst. C45, 1727-1730.
- Shamir, J., Lusti, S., Bino, A., Cohen, S. & Gibson, D. (1985). Inorg. Chem. 24, 2301–2309.
- Sheldrick, G. M. (1985). SHELXS86. Programm zur Lösung von Kristallstrukturen. Universität Göttingen, Deutschland.

Sheldrick, G. M. (1993). SHELXL93. Programm zur Verfeinerung von Kristallstrukturen. Universität Göttingen, Deutschland.

Webster, M., Mudd, K. R. & Taylor, D. J. (1976). Inorg. Chim. Acta, 20, 231-235.

Acta Cryst. (1996). C52, 333-336

(±)-cis-Dichloro[P-(isopropylamino)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine](triethylphosphine)platinum(II) Dichloromethane Solvate

Masood Parvez,^a Ruppa P. Kamalesh Babu^b and Setharampattu S. Krishnamurthy^b

^aDepartment of Chemistry, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4, and ^bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

(Received 13 February 1995; accepted 6 July 1995)

Abstract

In the racemic title compound, $[PtCl_2(C_{23}H_{20}NO_2P)-(C_6H_{15}P)].CH_2Cl_2$, the platinum(II) ion, which has approximately square-planar coordination geometry, is coordinated to two different monophosphorus ligands in a *cis* arrangement along with two chloride ions. A significant shortening of the P—N bond [1.604 (7) Å] relative to that in phosphinoamines and their complexes was observed.

Brown, D. S., Einstein, F. W. B. & Tuck, D. G. (1969). Inorg. Chem. 8, 14–18.